domingo, 11 de noviembre de 2012

Funciones


Concepto.


Es una regla que asigna a cada elemento de un primer conjunto un único elemento de un segundo conjunto. Por ejemplo, cada número entero posee un único cuadrado, que resulta ser un número natural (incluyendo el cero):
...  −2 → +4,  −1 → +1,  ±0 → ±0, 
+1 → +1,  +2 → +4,  +3 → +9,  ...


Gráfica de una Función.


En matemáticas, la gráfica de una función:

 

es la representación gráfica de la correspondencia entre los elementos del conjunto dominio y los del conjunto imagen. Es el conjunto formado por todos los pares ordenados (x, f(x)) de la función f; es decir, como un subconjunto del producto cartesiano X×Y.

Las únicas funciones que se pueden trazar de forma completa son las de una sola variable, con un sistema de coordenadas cartesianas, donde cada abscisa representa un valor de la variable del dominio y cada ordenada representa el valor correspondiente del conjunto imagen. Si la función es continua, entonces la gráfica formará una línea recta o curva.


Tipos de funciones.


  • Función lineal.
una función lineal es una función polinómica de primer grado; es decir, una función cuya representación en el plano cartesiano es una línea recta. Esta función se puede escribir como:

   f(x) = m x + b \,
donde m y b son constantes reales y x es una variable real. La constante m es la pendiente de la recta, y b es el punto de corte de la recta con el eje y.



  • Funcion Constante.

En matemática se llama función constante a aquella función matemática que toma el mismo valor para cualquier valor de la variable. Se la representa de la forma:
 f(x) = c \,
donde c es la constante.


  • Función Cuadrática.
En matemáticas, una función cuadrática o función de segundo grado es una función polinómica definida como:

en donde a, b y c son números reales (constantes) y a es distinto de 0.

La representación gráfica en el plano cartesiano de una función cuadrática es una parábola, cuyo eje de simetría es paralelo al eje de las ordenadas. La parábola se abrirá hacia arriba si el signo de a es positivo, y hacia abajo en caso contrario.



  • Función racional.


En matemáticas, una función racional es una función que puede ser expresada de la forma:
f(x) = \frac{P(x)}{Q(x)}
donde P y Q son polinomios y x una variable, siendo Q distinto del polinomio nulo. Las funciones racionales están definidas o tienen su dominio de definición en todos los valores de x que no anulen el denominador.

 y = \cfrac{x^2 -3x -2}{x^2 -4}

RationalDegree2byXedi.gif

                                                                   
Funcion racional de grado 2






 y = \cfrac{x^3 -2x}{2(x^2 -5)}


RationalDegree3byXedi.gif

Función racional de grado 3:



  • Función Exponencial.
a función exponencial, es conocida formalmente como la función real ex, donde e es el número de Euler, aproximadamente 2.71828...; esta función tiene por dominio de definición el conjunto de los números reales, y tiene la particularidad de que su derivada es la misma función. Se denota equivalentemente como f(x)=ex o exp(x), donde e es la base de los logaritmos naturales y corresponde a la función inversa del logaritmo natural.
En términos mucho más generales, una función real E(x) se dice que es del tipo exponencial en base a si tiene la forma


siendo a, K ∈ R números reales, con a > 0. Así pues, se obtiene un abanico de exponenciales, todas ellas similares, que dependen de la base a que utilicen.








Bachiller:

Daniel tovar
Exp. 26778




 












Limites

Concepto.


El límite es un concepto que describe la tendencia de una sucesión o una función, a medida que los parámetros de esa sucesión  o función se acercan a determinado valor.









Propiedades.


Si f(x) y g(x) son funciones de variable real y k es un escalar, entonces, se cumplen las siguientes propiedades:


Límite deExpresión
Una constante \lim_{x \to c} k =\, k\,
La función identidad \lim_{x \to c} x = \, c \,
El producto de una función y una constante \lim_{x \to c} kf(x) =\, k\lim_{x \to c} f(x)\,
Una suma \lim_{x \to c} (f(x) + g(x)) =\, \lim_{x \to c} f(x) + \lim_{x \to c} g(x)\,
Una resta \lim_{x \to c} (f(x) - g(x)) =\, \lim_{x \to c} f(x) - \lim_{x \to c} g(x)\,
Un producto \lim_{x \to c} (f(x) g(x)) =\, \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)\,
Un cociente \lim_{x \to c} {{f(x)}\over {g(x)}} =\, {{\lim_{x \to c} {f(x)}} \over {\lim_{x \to c} {g(x)}}}\,\ \mbox{si } \lim_{x \to c} g(x) \ne 0,
Una potencia {\lim_{x \to c}  f(x)^{g(x)}} =\, {\lim_{x \to c} f(x)^{\lim_{x \to c} g(x)}}\,\ \mbox{si } f(x) > 0
Un logaritmo {\lim_{x \to c} \log f(x)} =\, \log {\lim_{x \to c} f(x)}
El número e {\lim_{x \to 0} \left(1+x\right)^{1 \over x}} =\, {\lim_{x \to \infty} \left(1+{1 \over x}\right)^x } =\, e
Función f(x) acotada y g(x) infinitesimal


 {\lim_{x \to c} \left(f(x) \cdot g(x)\right)} =\, 0.



Indeterminaciones.


Hay varios tipos de indeterminaciones, entre ellas las siguientes (considere \infty \,\! como el límite que tiende a infinito y 0 \,\! al límite cuando tiende a 0; y no al número 0):

Operación Indeterminación
Sustracción \infty - \infty
Multiplicación \infty \cdot 0
División \cfrac{\infty}{\infty}, \cfrac{0}{0}
Elevación a potencia 1^\infty, \infty ^0, 0^0

Ejemplo.

0/0 es una indeterminación, es decir, no es posible, a priori, saber cual es el valor de un límite que tiende a cero sobre otro que también tiende a cero ya que el resultado no es siempre el mismo. Por ejemplo:
\lim_{t\rightarrow 0}\frac{t}{t^2}=\infty \lim_{t\rightarrow 0}\frac{t}{t}=1 \lim_{t\rightarrow 0}\frac{t^2}{t}=0

Introducción al concepto de límite de una función parte1

Introducción al concepto de límite de una función parte2

Derivadas

Derivadas


Concepto

En matemáticas, la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se toma cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado.



Propiedades


  • Derivada una función constante:

la derivada de una función constante es cero.


Ejemplo.



Si   
\mathrm{f} \left( \, x \, \right) = 2, \, \forall x \in \mathbb{R}
,   entonces
       
\mathrm{f}^\prime \left( \, x \, \right) = 0, \, \forall x \in \mathbb{R}



  • Derivada de una suma de funciones:



La derivada de la suma de dos funciones es igual a la suma de las derivadas de dichas funciones:

\left(
 \, \mathrm{f} \, + \, \mathrm{g} \,
\right)
^\prime \, = \, \mathrm{f}^\prime \, + \, \mathrm{g}^\prime \,
Este resultado, se puede ampliar a cualquier número de funciones:


\left( \, \mathrm{f}_1 + \mathrm{f}_n + \ldots + \mathrm{f}_n \, \right)^\prime =
\mathrm{f}_1^\prime + \mathrm{f}_n^\prime + \ldots + \mathrm{f}_n^\prime

  • Derivada de una diferencia de funciones:


La derivada de la diferencia de dos funciones es igual a la diferencia de las derivadas de dichas funciones:


\left(
 \, \mathrm{f} \, - \, \mathrm{g} \,
\right)
^\prime \, = \, \mathrm{f}^\prime \, - \, \mathrm{g}^\prime \,



Ejemplo.



\left(
</p>
<pre> \, x^2 - x \,
</pre>
<p>\right)^\prime =
\left( \, x^2 \, \right)^\prime - \left( \, x \, \right)^\prime = 2x - 1


  • Derivada de un Producto de Funciones.

La derivada del producto de dos funciones,   
\mathrm{f}
   y   
\mathrm{g}
 , viene dada por la fórmula:



\left(
 \, \mathrm{f} \cdot \mathrm{g} \,
\right)
^\prime \, = \, \mathrm{f}^\prime \cdot \mathrm{g} \, + \, \mathrm{f} \cdot \mathrm{g}^\prime \,


Ejemplo.



\left(
</p>
<pre> \, x^2 \cdot x \,
</pre>
<p>\right)^\prime =
\left(  \,  x^2  \,  \right)^\prime  \cdot   x  +  x^2  \cdot  \left(  \,  x  \,
\right)^\prime = 2x \cdot x + x^2 \cdot 1 = 3x^2
Observese que   
x^2 \cdot x = x^3
   y que la derivada de   
x^3
   es precisamente   
3x^2


  • Derivada de un cociente de funciones. 


La derivada del cociente viene dada por la fórmula: 




Ejemplo. 



http://aprendermatematicas.blogspot.com/2008/01/clase-n-7-propiedades-de-las-derivadas.html